the points (9, 21) and (18, 42) form a proportional relationship. Find the slope of the points. Then use the slope to graph the line. Answer the number of the slope

Respuesta :

Answer:

[tex]\begin{gathered} \text{slope m =}\frac{7}{3} \\ \text{equation } \\ y=\frac{7}{3}x \end{gathered}[/tex]

Graphing the function;

Explanation:

Given that the points (9, 21) and (18, 42) form a proportional relationship.

[tex]y=mx[/tex]

where; m = slope.

Given;

[tex]\begin{gathered} (x_1,y_1)=(9,21) \\ (x_2,y_2)=(18,42) \end{gathered}[/tex]

Calculating the slope;

[tex]\begin{gathered} m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1} \\ \text{substituting the given coordinates;} \\ m=\frac{42-21}{18-9} \\ m=\frac{21}{9} \\ m=\frac{7}{3} \end{gathered}[/tex]

The slope of the line passing througth the points is;

[tex]\frac{7}{3}[/tex]

So, the equation of the proportional relationship is;

[tex]y=\frac{7}{3}x[/tex]

Graphing the function;

Ver imagen CorvinH251382