Respuesta :

step 1

Determine the complex conjugate of the denominator

the complex conjugate of the denominator is (6-4i)

step 2

Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator

we have

[tex]\frac{2-5i}{6+4i}\cdot\frac{6-4i}{6-4i}[/tex]

Multiply

[tex]\frac{2-5i}{6+4i}\cdot\frac{6-4i}{6-4i}=\frac{(12-8i-30i+20i^2)}{36-16i^2}[/tex]

Remmeber that

i^2=-1

substitute

[tex]\begin{gathered} \frac{(12-8i-30i-20)}{36+16} \\ \\ \frac{-8-38i}{52} \\ \\ -\frac{8}{52}-\frac{38}{52}i \end{gathered}[/tex]

Simplify

[tex]-\frac{2}{13}-\frac{19}{26}i[/tex]