Given a right angle triangle with equal legs and the hypotenuse as 5 meters, we can proceed to draw a diagram to help illustrate the solution.
Let the value of the legs be x
We can find the value of x using the Pythagoras theorem.
[tex]\begin{gathered} 5^2=x^2+x^2 \\ 2x^2=25 \\ \text{Divide both sides by 2} \\ x^2=\frac{25}{2} \\ \text{square root both sides} \\ x=\sqrt[]{\frac{25}{2}} \\ x=\frac{5}{\sqrt[]{2}} \\ we\text{ find the conjugate of the radical} \\ \frac{5}{\sqrt[]{2}}\times\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ \therefore x=\frac{5\sqrt[]{2}}{2} \end{gathered}[/tex]Therefore, the length of the leg is
[tex]x=\frac{5\sqrt[]{2}}{2}[/tex]