Given expression
[tex]y=e^{2x}(x^4-1)[/tex]To solve it with product rule. First we will get familiar with product rule. That is
[tex]\frac{d(uv)}{dx}=u\frac{du}{dv}+v\frac{du}{dx}[/tex]Now, we will solve given as:
[tex]\begin{gathered} \frac{d(e^{2x}(x^4-1))}{dx}=e^{2x}\frac{d(x^4-1)}{dx}+(x^4-1)\frac{d(e^{2x})}{dx} \\ =e^{2x}(4x^3)+(x^4-1)2e^{2x}^{} \\ =4e^{2x}x^3+2e^{2x}x^4-2e^{2x} \end{gathered}[/tex]Hence, we got solution after applying product rule.