In triangle ABC, C is a right angle. The length of AC=12 and the measure of angle is 40 degrees.Solve the triangle to find the unknown measurements.Round to the nearest tenth.

Respuesta :

Since your question doesn't specify which angle is 40 degrees, we will take two cases:

i) When ∠B = 40°

ii) When ∠A = 40°

Solving part (i):

If ∠B = 40°, we can draw a diagram,

Using sine, we can find AB and using tangent, we can find BC.

The ratio and steps to solve are shown below:

[tex]\begin{gathered} \sin 40=\frac{12}{AB} \\ AB\sin 40=12 \\ AB=\frac{12}{\sin 40} \\ AB=18.7 \end{gathered}[/tex]

and,

[tex]\begin{gathered} \tan 40=\frac{12}{BC} \\ BC\tan 40=12 \\ BC=\frac{12}{\tan 40} \\ BC=14.3 \end{gathered}[/tex]AnswerWhen ∠B = 40°,AB = 18.7BC = 14.3----------------------------------------------------------------------------------Solving part (ii):

If ∠A = 40°, we can draw a diagram,

Using cosine, we can find AB and using tangent, we can find BC.

The ratio and steps to solve are shown below:

[tex]\begin{gathered} \cos 40=\frac{12}{AB} \\ AB\cos 40=12 \\ AB=\frac{12}{\cos 40} \\ AB=15.7 \end{gathered}[/tex]

and,

[tex]\begin{gathered} \tan 40=\frac{BC}{12} \\ 12\tan 40=BC \\ BC=10.1 \end{gathered}[/tex]

AnswerWhen ∠A = 40°,AB = 15.7BC = 10.1
Ver imagen BertramE277672
Ver imagen BertramE277672