Respuesta :

Not A, Not B, Not C,

Explanation

Step 1

find the equation of the line,use

P1(5,4) P2(3,6)

a) find the slope

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{6-4}{3-5}=\frac{2}{-2}=-1 \\ \end{gathered}[/tex]

b) use the slope-y intercep point to find the equation

Let Point= P1

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{replace} \\ y-4=-1(x-5) \\ y-4=-x+5 \\ y=-x+5+4 \\ y=9-x \end{gathered}[/tex]

Step 2

to find the fifth ordered pair, replace in the equation and check if it is true.

A(5,7)

then x=5 ,y =7

[tex]\begin{gathered} y=9-x \\ 7=9-5 \\ 7=4,\text{ False} \end{gathered}[/tex]

Hence A is a point of the line, it is not the ordered pair

B(2,1)

then

x=2 , y=1

[tex]\begin{gathered} y=9-x \\ 2=9-1 \\ 2=7,\text{ False} \end{gathered}[/tex]

Hence B is not a point of the line, it is not the ordered pair

C(9,6)

[tex]\begin{gathered} y=9-x \\ 6=9-9 \\ 6=0,\text{ false} \end{gathered}[/tex]

Hence C is not a point of the line, it is not the ordered pair