Respuesta :

Given:

[tex]\frac{x}{3}+\frac{x}{6}\ge\frac{x}{4}+230[/tex]

Required:

we have to calculate the above equation for the value of x.

Explanation:

First of all we find common denominator

[tex]\begin{gathered} \frac{2x+x}{6}\ge\frac{x}{4}+230 \\ \\ combine\text{ like terms} \\ \frac{3x}{6}\ge\frac{x}{4}+230 \end{gathered}[/tex][tex]\begin{gathered} cancel\text{ terms that are in both numenator and denomenator} \\ \frac{x}{2}\ge\frac{x}{4}+230 \\ find\text{ common denominator} \\ \frac{x}{2}\ge\frac{x}{4}+\frac{4.230}{4\text{ }} \\ \\ \frac{x}{2}\ge\frac{x+4.230}{4} \\ \end{gathered}[/tex][tex]\begin{gathered} multiply\text{ the numbers} \\ \frac{x}{2}\ge\frac{x+920}{4} \\ multiply\text{ all terms by the same value to eliminate fraction denominator.} \\ 4.\frac{x}{2}\ge4.\frac{x+920}{4} \\ cancel\text{ multiplies terms that are in denominator} \\ 2x\ge x+920 \\ subtract\text{ x from both the sides} \\ x\ge920 \end{gathered}[/tex]

Required answer:

[tex]x\ge920[/tex]