Respuesta :

Given :

m=1/2 and the point on the line is (0,0).

The equation of the line is

[tex]y=mx+b[/tex]

where m is slope and b is y itercept.

The y-intercept is the point where the lie crosses the y-axis.

(0,0) is the y-intercepet point.

we get b=0.

Substitute m=1/2 and b=0 in the line equation, we get

[tex]y=\frac{1}{2}x+0[/tex]

The line equation is

[tex]y=\frac{1}{2}x[/tex]

Similarly, replacing m=-1/-2 and b=0 in the line equation, we get

[tex]y=\frac{-1}{-2}x[/tex]

Set x=0, we get

[tex]y=\frac{-1}{-2}(0)[/tex]

We get the point (0,0).

Set x=2, we get

[tex]y=\frac{-1}{-2}(2)[/tex][tex]y=1[/tex]

We get the point (2,1).

Set x=-2, we get

[tex]y=\frac{-1}{-2}(-2)[/tex]

[tex]y=-1[/tex]

We get the point (-2,-1).

Mark th epoints (0,0), (2,1) and (-2,-1).

Join all the points by ray.

we get the same line.

Hence we get that

[tex]m=\frac{1}{2}=\frac{-1}{-2}[/tex]

Ver imagen AnaiyaZ113740