Respuesta :

To find the central angle of a polygon we just divide 360° by the number of sides that the polygon has, in this case, we have a pentagon, then the central angle of the polygon is:

[tex]CA=\frac{360}{5}=72[/tex]

In the figure this angle is represented like this:

If we bisect this angle, which is dividing it by 2, we get the angle θ:

[tex]\theta=\frac{72}{2}=36[/tex]

We know that the cosine of the angle θ is:

[tex]\cos (\theta)=\frac{10}{c}[/tex]

By solving for c from this ratio we get:

[tex]\begin{gathered} \cos (\theta)=\frac{10}{c} \\ c\times\cos (\theta)=\frac{10}{c}\times c \\ c\times\cos (\theta)=10\times\frac{c}{c} \\ c\times\cos (\theta)=10 \\ \frac{c\times\cos (\theta)}{\cos (\theta)}=\frac{10}{\cos (\theta)} \\ c\times\frac{\cos (\theta)}{\cos (\theta)}=\frac{10}{\cos (\theta)} \\ c=\frac{10}{\cos (\theta)}=\frac{10}{\cos (36)}\approx12.36\text{ cm} \end{gathered}[/tex]

Then, the measure of the radius equals 12.36 cm

Ver imagen LilliaI129266
Ver imagen LilliaI129266