Respuesta :

Given the following expression:

[tex]\sqrt[]{45}(x^{2}y^{3}​)[/tex]

You can simplify it following the procedure shown below:

1. You need to descompose the Radicand (the number 45 inside the radical symbol into its Prime Factors:

[tex]45=3\cdot3\cdot5[/tex]

Remember that the Product of powers property states that:

[tex](b^m)(b^n)=b^{(m+n)}[/tex]

Then:

[tex]45=3\cdot3\cdot5=3^2\cdot5[/tex]

2. Rewrite the expression:

[tex]=\sqrt[]{(3^2\cdot5)}(x^2y^3​)[/tex]

3. Remember the following property for Radicals:

[tex]\sqrt[n]{a^n}=a[/tex]

Then, simplifying, you get that the answer is:

[tex]\begin{gathered} =3\sqrt[]{(5)}x^2y^3​ \\ \end{gathered}[/tex]

Otras preguntas