Respuesta :

The form of the exponential function is

[tex]y=a(1\pm r)^x[/tex]

a is the initial value

r is the rate in decimal

(+) for growth

(-) for decay

1.

The initial value is 153, then

[tex]a=153[/tex]

The growth rate is 20%, then change it to decimal by dividing it by 100

[tex]r=\frac{20}{100}=0.2[/tex]

Substitute them in the form above

[tex]\begin{gathered} y=153(1+0.2)^x \\ y=153(1.2)^x \end{gathered}[/tex]

2.

The initial amount is 127

[tex]a=127[/tex]

The rate of growth is 7%

[tex]r=\frac{7}{100}=0.07[/tex]

The equation is

[tex]\begin{gathered} y=127(1+0.07)^x \\ y=127(1.07)^x \end{gathered}[/tex]

3.

The initial value is 146

[tex]a=146[/tex]

The growth rate is 5.5%

[tex]r=\frac{5.5}{100}=\frac{55}{1000}=0.055[/tex]

The equation is

[tex]\begin{gathered} y=146(1+0.055)^x \\ y=146(1.055)^x \end{gathered}[/tex]

4.

The initial value is 116

[tex]a=116[/tex]

The growth rate is 117%

[tex]r=\frac{117}{100}=1.17[/tex]

The equation is

[tex]\begin{gathered} y=116(1+1.17)^x \\ y=116(2.17)^x \end{gathered}[/tex]

5.

The initial amount is 94

[tex]a=94[/tex]

The decay rate is 13%

[tex]r=\frac{13}{100}=0.13[/tex]

Since it is decay, then we will use (1 - r)

The equation is

[tex]\begin{gathered} y=94(1-0.13)^x \\ y=94(0.87)^x \end{gathered}[/tex]

6.

The initial value is 142

[tex]a=142[/tex]

The decay rate is 3%

[tex]r=\frac{3}{100}=0.03[/tex]

The equation is

[tex]\begin{gathered} y=142(1-0.03)^x \\ y=142(0.97)^x \end{gathered}[/tex]

7.

The initial value is 171

[tex]a=171[/tex]

The decay rate is 0.3%

[tex]r=\frac{0.3}{100}=\frac{3}{1000}=0.003[/tex]

The equation is

[tex]\begin{gathered} y=171(1-0.003)^x \\ y=171(0.997)^x \end{gathered}[/tex]