Respuesta :

Given the slant height and the height of the pyramid cap as;

[tex]s=3.2^{\prime},\text{ h=3'}[/tex]

Thus, the total surface area of the shape is;

[tex]\begin{gathered} T\mathrm{}S\mathrm{}A=\text{Area of four triangles + Area of four rectangles + area of a square} \\ TSA=4(\frac{1}{2}\times2\times3.2)+4(2\times8)+(2\times2) \\ TSA=4(3.2)+4(16)+4 \\ TSA==12.8+64+4 \\ TSA=80.8 \end{gathered}[/tex]

Hence, the total outside surface area of the solid object is 80.8 square feet.

Also, the volume of the solid object is;

[tex]\begin{gathered} V=\frac{1}{3}(\text{(2}\times2)(3))+(2\times2\times8) \\ V=4+32 \\ V=36 \end{gathered}[/tex]

Hence, the volume of the solid object is 36 cubic feet.