Respuesta :

SOLUTION

Given

[tex]P(E)=0.4,P(F)=0.5,P(E\text{ and F)}=0.2[/tex]

Using the rule of probability it follows:

[tex]P(E\text{ or F)}=P(E)+P(F)-P(E\text{ and F)}[/tex]

Substituting values gives

[tex]\begin{gathered} P(E\text{ or F)}=0.4+0.5-0.2 \\ P(E\text{ or F)}=0.7 \end{gathered}[/tex]

Therefore the answer is P(E or F)=0.7