Bag 1
Red = 5
Blue = 4
Green = 6
Total = 15
Bag 2
Red = 3
Blue = 2
Green = 4
Total = 9
[tex]\begin{gathered} \text{Probability of an event = }\frac{n\text{ umber of required outcomes}}{n\text{ umber of possible outcomes}} \\ \text{For bag 1} \\ \text{Probability of selecting red marble from bag 1} \\ =\text{ }\frac{5}{15}\text{ = }\frac{1}{3} \\ \text{Probability of selecting red marble from bag 2} \\ =\text{ }\frac{3}{9}\text{ = }\frac{1}{3} \\ \\ \end{gathered}[/tex]Therefore, Probability of selecting 1 red ball from each bag = red and red
[tex]\begin{gathered} =\text{ }\frac{1}{3}\text{ x }\frac{1}{3} \\ =\text{ }\frac{1}{9} \end{gathered}[/tex]