Respuesta :

Given:

[tex](y+4)^2-2(y+4)+1[/tex]

To find:

The factors.

Explanation:

i) Let us take,

[tex]t=y+4[/tex]

Substituting we get,

[tex]t^2-2t+1[/tex]

Factorizing we get

[tex]\begin{gathered} t^2-2t+1=t^2-t-t+1 \\ =t(t-1)-(t-1) \\ =(t-1)(t-1) \\ =(t-1)^2 \end{gathered}[/tex]

Replace the value of t in the above equation,

[tex]\begin{gathered} =(y+4-1)^2 \\ =(y+3)^2 \end{gathered}[/tex]

Therefore, the factored form of the polynomial is,

[tex](y+3)^2[/tex]

ii) Yes, this is the product of the perfect square trinomial.

So, Teresa is correct.

Final answer:

i) The factored form of the polynomial is,

[tex](y+3)^2[/tex]

ii) Teresa is correct.