Respuesta :

Given

The circumference of a circle is 7π

We need to find the area.

First of all, let's use the formula for the circumference of a circle and find the radius. Shown below:

[tex]\begin{gathered} \text{Circumference}=2\pi r \\ C=2\pi r \\ 7\pi=2\pi r \\ r=\frac{7\pi}{2\pi} \\ r=\frac{7}{2} \end{gathered}[/tex]

Now, we can easily find the area by using this radius value in the formula for the area of a circle. Shown below:

[tex]\begin{gathered} \text{AreaofCircle}=\pi r^2 \\ A=\pi r^2 \\ A=\pi(\frac{7}{2})^2 \\ A=\pi(\frac{49}{4}) \\ A=\frac{49\pi}{4} \end{gathered}[/tex]

Thus, the exact area of the circle is:

[tex]\frac{49\pi}{4}[/tex]