Respuesta :

Answer:

Sin D = 7 / 25

Explanation:

The value of sin D is given by

[tex]\sin D=\frac{\text{opposite}}{\text{hypotenuse}}[/tex][tex]\sin D=\frac{EF}{25}[/tex]

but we need to find the length EF.

Now the Pythagoras' theorem says

[tex]EF^2+24^2=25^2[/tex]

Solving for EF gives

[tex]EF^2=25^2-24^2[/tex][tex]EF^2=49[/tex]

taking the square root of both sides gives

[tex]EF=\sqrt[]{49}[/tex][tex]EF=7[/tex]

With the value of EF in hand, we now have

[tex]\sin D=\frac{EF}{25}=\frac{7}{25}[/tex][tex]\boxed{\sin D=\frac{7}{25}\text{.}}[/tex]

which is our answer!