Calculate the electric potential at the center of the square described as follows: Four charges are placed at the corners of a 20 cm square. The particles are as follows: 10 microC at x =0, y = 0, -5 microC at x = 20, y = 0, -15 microC at x = 20, y = 20, and 20 microC at x=0 and y = 20 .

Respuesta :

, the answer is 2020 kV

Explanation

Electric potential of a point charge is

[tex]\begin{gathered} V=\frac{KQ}{d} \\ where\text{ kis a constant k=9*10}^9\text{ N*}\frac{m^2}{C^2} \\ Q\text{ is charge , d is the distance} \end{gathered}[/tex]

so

Step 1

Diagram:

Step 2

distances:fromthe center to each charge:

:

[tex]\begin{gathered} d=\sqrt{0.10^2+0.10^2}=\sqrt{0.02}\text{ m=0.1414m} \\ d=0.1414\text{ m} \end{gathered}[/tex]

Step 3

electric potential due to each charge.

a) Q1

[tex]\begin{gathered} V=\frac{KQ}{d} \\ V=\text{9*10}^9\text{ N*}\frac{m^2}{C^2}*\frac{10*10^{-6}C}{0.1414\text{ m}} \\ V=636.49\text{ kV} \\ \end{gathered}[/tex]

b)Q2

[tex]\begin{gathered} V=\frac{KQ}{d} \\ V=\text{9*10}^9\text{ N*}\frac{m^2}{C^2}*\frac{-5*10^{-6}C}{0.1414\text{ m}} \\ V=-318.24\text{ KV} \\ \end{gathered}[/tex]

c)Q3

[tex]\begin{gathered} V=\frac{KQ}{d} \\ V=\text{9*10}^9\text{ N*}\frac{m^2}{C^2}*\frac{-15*10^{-6}C}{0.1414\text{ m}} \\ V=-954.73\text{kV} \\ \end{gathered}[/tex]

d)Q4

[tex]\begin{gathered} V=\frac{KQ}{d} \\ V=\text{9*10}^9\text{ N*}\frac{m^2}{C^2}*\frac{20*10^{-6}C}{0.1414\text{ m}} \\ V=-954.73\text{kV} \\ V=1272.98\text{ kV} \end{gathered}[/tex]

so, the resultant electric potential are:

:

So

[tex]\begin{gathered} v=\sqrt{1309.2^2+1591.22^2} \\ v=2060\text{ Kv} \end{gathered}[/tex]

therefore, the answer is 2020 kV

I hope this helps you

Ver imagen McguireT615254
Ver imagen McguireT615254
Ver imagen McguireT615254
Ver imagen McguireT615254