Answer: $1, 295.03
Given that
Principal = Amount invested
Rate = percentage interest
T = time
n = compounding period
Apply the compound interest formula
[tex]\begin{gathered} A\text{ = P(1 + }\frac{r}{n})^{n\text{ x t}} \\ P\text{ = \$1000} \\ r\text{ = 9\%} \\ t\text{ = 3 } \\ n\text{ = 1 because it is compunded annually} \\ A\text{ = 1000( 1 + }\frac{0.09}{1})^{3\text{ x 1}} \\ A=1000(1+0.09)^3 \\ A=1000(1.09)^3 \\ A\text{ = 1000 x 1.295} \\ A\text{ = \$1, 295. 029} \\ \text{therefore, the total money after three years is \$1, 295.03} \\ \end{gathered}[/tex]