Convert the natural logs to exponential form, and solve. If 1n e^-3 = x then x = ?

The natural logarithm of a number is defined as follows:
[tex]\ln A=x_{}[/tex]means that when we elevate the Euler number e to x, the result is A:
[tex]\ln A=x\Rightarrow A=e^x[/tex]In this problem, we have
[tex]A=e^{-3}[/tex]Thus
[tex]\ln e^{-3}=x\Rightarrow e^{-3}=e^x[/tex]Then, since the bases are the same, for the equation to hold we need the exponents to be the same:
[tex]\begin{gathered} e^{-3}=e^x\Rightarrow-3=x \\ \\ \therefore x=-3 \end{gathered}[/tex]