Respuesta :

The equation of the line in the slope-intercept form is given by:

[tex]\begin{gathered} y=mx+b \\ where \\ m=slope \\ b=y-intercept_{}_{} \\ \end{gathered}[/tex]

Since the line goes through the origin:

[tex]b=0[/tex]

We can find the slope using the following formula:

[tex]\begin{gathered} m=\frac{y2-y1}{x2-x1} \\ where \\ (x1,y1)=(-5,-3) \\ (x2,y2)=(0,0) \\ so\colon \\ m=\frac{0-(-3)}{0-(-5)}=\frac{3}{5}=0.6 \end{gathered}[/tex]

Therefore, the equation of the line is:

[tex]\begin{gathered} y=\frac{3}{5}x \\ or \\ y=0.6x \end{gathered}[/tex]