hello
to solve this question, we need to sketch this situation to give us a better illustration
to find the angle of elevation, we can use trigonometric ratios here
SOHCAHTOA
[tex]\begin{gathered} \text{SOH}=\sin \theta=\frac{\text{opp}}{\text{hyp}} \\ \text{CAH}=\cos \theta=\frac{adj}{hyp} \\ \text{TOA}=\tan \theta=\frac{\text{opp}}{\text{adj}} \end{gathered}[/tex]since we have the value of hypothenus and opposite, we can use the sine angle to find the angle of elevation
[tex]\begin{gathered} \sin \theta=\frac{opp}{hyp} \\ \text{opp}=100 \\ \text{hyp}=250 \\ \sin \theta=\frac{100}{250} \\ \sin \theta=0.4 \\ \text{take the sine inverse of 0.4} \\ \theta=\sin ^{-1}0.4_{} \\ \theta=23.578^0 \\ \theta\approx24^0 \end{gathered}[/tex]from the calculation above, the angle of elevation is equal to 24 degrees