Respuesta :

Given data:

* The x-coordinate of the position at time t is,

[tex]x=t^2[/tex]

* The y-coordinate of the position at time t is,

[tex]y=t^3-2t[/tex]

Solution:

The position vector at time t is,

[tex]\vec{r}=t^2i+(t^3-2t)j[/tex]

The velocity vector at time t is,

[tex]\vec{v}=\frac{\vec{dr}}{dt}[/tex]

Substituting the known values,

[tex]\begin{gathered} \vec{v}=\frac{d}{dt}(t^2i+(t^3-2t)j) \\ \vec{v}=2ti+(3t^2-2)j \end{gathered}[/tex]

The acceleration vector at time t is,

[tex]\vec{a}=\frac{d}{dt}(\vec{v})[/tex]

Substituting the known values,

[tex]\vec{a}=\frac{d}{\differentialDt t}(2ti+(3t^2-2)j)[/tex]