Determine if the values of the variables listed are solutions of the system of equations.

To verify if the answer satisfies the system of the equations, we can substitute the values of x, y, and z in the equations.
If the values are the same as the values in the equations, then x, y, and z are the solutions.
1) Let's substitute x, y, and z in the first equation.
x = 1
y = -1
z = 2
[tex]\begin{gathered} 4x+4y+2z=4 \\ 4\cdot1+4\cdot(-1)+2\cdot2=4 \\ 4-4+4=4 \\ 4=4 \\ \text{OK} \end{gathered}[/tex]2) Let's substitute x, y, and z in the second equation.
[tex]\begin{gathered} x-y-z=0 \\ 1-(-1)-2=0 \\ 1+1-2=0 \\ 2-2=0 \\ 0=0 \\ OK \end{gathered}[/tex]3) Let's substitute x, y, and z in the third equation.
[tex]\begin{gathered} 3y-3z=-8 \\ 3\cdot(-1)-3\cdot2=-8 \\ -3-6=-8 \\ -9=-8 \\ \text{NOT OK} \end{gathered}[/tex]Since the values of x, y and z do not satisfy equation 3, it is not the solution of this system.
Answer: NO.