Respuesta :

Using the data statement, we plot the following diagram:

We see that the angle of the result vector is:

[tex]\theta_1=180\degree+\theta_2\text{.}[/tex]

The second angle can be computed using the trigonometric relation:

[tex]\tan \theta_2=\frac{OS}{AS}\text{.}[/tex]

Where:

• OS = opposite side to θ_2 = 780 m,

,

• AS = adjacent side to θ_2 = 360 m.

Replacing these values in the formula above, we have:

[tex]\tan \theta_2=\frac{780m}{360m}=\frac{13}{6}\Rightarrow\theta_2=\arctan (\frac{13}{6})\cong65.22\degree.[/tex]

So the resultant angle is:

[tex]\theta_1=180\degree+\theta_2\cong180\degree+65.2\degree=245.2\degree.[/tex]

Answer

The resultant angle is 245.2° to the nearest tenth.

Ver imagen MarquavionU449897