Which of the following are identities? Check all that apply. O A. sin8 x = 2 sin 4x cos4x O B. sin X + sin5 x = tan3x Cũ= x + CDs5x O c. (sinx-cos ) = 1 + sin 2x 1 O D. 1 - tan2 x 2 tan x

Which of the following are identities Check all that apply O A sin8 x 2 sin 4x cos4x O B sin X sin5 x tan3x Cũ x CDs5x O c sinxcos 1 sin 2x 1 O D 1 tan2 x 2 tan class=

Respuesta :

The identity has two equal side

Let us check each one

A)

[tex]\sin 8x=2\sin 4x\cos 4x[/tex]

The L.H.S is sin 8x, we will use the rule of the double angle

[tex]\sin 2\theta=2\sin \theta\cos \theta[/tex]

Then divide 8x by 2 and use the rule of the double angle

[tex]\sin 8x=2\sin 4x\cos 4x[/tex]

This value = the R.H.S, then

sin 8x = 2sin 4x cos 4x is an identity

Then answer A is an identity

C)

[tex](\sin x-\cos x)^2=1+2\sin 2x[/tex]

Solve the left side

[tex]\begin{gathered} LHS=(\sin x-\cos x)^2 \\ LHS=\sin ^2x+\cos ^2x-2\sin x\cos x \end{gathered}[/tex]

Since sin^2(x) + cos^2(x) = 1, then

[tex]LHS=1-2\sin x\cos x[/tex]

Since 2 sin x cos x = sin(2x), then

[tex]LHS=1-\sin 2x[/tex]

But the R.H.S is 1 + sin 2x, then

L.H.S not equal R.H.S

Then answer C is not an identity

D)

[tex]\frac{1-\tan^2x}{2\tan x}=\frac{1}{\tan 2x}[/tex]

Since tan 2x is equal to

[tex]\tan 2x=\frac{2\tan x}{1-\tan ^2x}[/tex]

By reciprocal the two sides, then

[tex]\frac{1}{\tan2x}=\frac{1-\tan ^2x}{2\tan x}[/tex]

Switch the 2 sides

[tex]\frac{1-\tan^2x}{2\tan x}=\frac{1}{\tan 2x}[/tex]

Answer D is an identity

B)

[tex]\frac{\sin x+\sin5x}{\cos x+\cos5x}=\tan 3x[/tex]

For the left side

[tex]L.H.S=\frac{\sin x+\sin 5x}{\cos x+\cos 5x}[/tex]

Change angle 5x to 4x + x

[tex]\begin{gathered} \sin 5x=\sin (4x+x) \\ \sin (4x+x)=\sin 4x\cos x+\cos 4x\sin x \end{gathered}[/tex]

Solve sin4x

[tex]\sin 4x\cos x=(2\sin 2x\cos 2x)(\cos x)=2\cos x\sin 2x\cos 2x[/tex]

Solve cos4x

[tex]\cos 4x\sin x=(1-2\sin ^22x)(\sin x)=\sin x-2\sin x\sin ^22x[/tex]

Then sinx+

Otras preguntas