I do I find the slope of AC and slope of the tangent line?


Given:
Find-:
(A) Slope of radius
(B) Slope of tangent
Explanation-
The radius AB
Point A coordinates:
[tex]\begin{gathered} A=(5,2) \\ \\ B=(7,6) \end{gathered}[/tex]The formula of the slope is:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]Where,
[tex]\begin{gathered} (x_1,y_1)=\text{ First point} \\ \\ (x_2,y_2)=\text{ Second point} \end{gathered}[/tex]So, the slope of AB is:
[tex]\begin{gathered} m=\frac{6-2}{7-5} \\ \\ m=\frac{4}{2} \\ \\ m=2 \end{gathered}[/tex]The slope of the Radius is 2.
For the tangent line:
Take any two-point from a tangent,
[tex]\begin{gathered} B=(7,6) \\ \\ C=(11,4) \end{gathered}[/tex]The slope tangent is:
[tex]\begin{gathered} m=\frac{4-6}{11-7} \\ \\ m=\frac{-2}{4} \\ \\ m=-\frac{1}{2} \\ \\ m=-0.5 \end{gathered}[/tex]The slope of the tangent line is -0.5