Respuesta :

Given:

Find-:

(A) Slope of radius

(B) Slope of tangent

Explanation-

The radius AB

Point A coordinates:

[tex]\begin{gathered} A=(5,2) \\ \\ B=(7,6) \end{gathered}[/tex]

The formula of the slope is:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where,

[tex]\begin{gathered} (x_1,y_1)=\text{ First point} \\ \\ (x_2,y_2)=\text{ Second point} \end{gathered}[/tex]

So, the slope of AB is:

[tex]\begin{gathered} m=\frac{6-2}{7-5} \\ \\ m=\frac{4}{2} \\ \\ m=2 \end{gathered}[/tex]

The slope of the Radius is 2.

For the tangent line:

Take any two-point from a tangent,

[tex]\begin{gathered} B=(7,6) \\ \\ C=(11,4) \end{gathered}[/tex]

The slope tangent is:

[tex]\begin{gathered} m=\frac{4-6}{11-7} \\ \\ m=\frac{-2}{4} \\ \\ m=-\frac{1}{2} \\ \\ m=-0.5 \end{gathered}[/tex]

The slope of the tangent line is -0.5

Ver imagen RamiahQ303453