SOLUTION
Step1: Write out the lenght of the sides
[tex]7ft,8ft\text{ and 9ft}[/tex]Step2; Calculate the semi perimeter of the triangle using the formula below
[tex]\begin{gathered} s=\frac{a+b+c}{2} \\ \text{where = a, b, c are the lenght of the sides } \\ a=7,\text{ b=8, c=9} \\ s=\text{ semi-peremeter} \end{gathered}[/tex]Then, by substituting the parameter, we have
[tex]s=\frac{7+8+9}{2}=\frac{24}{2}=12[/tex]Step 3: Apply the heron's formula to find the Area
[tex]\text{Area A=}\sqrt[]{s(s-a)(s-b)(s-c)}[/tex]then substitute the parameters into the formula
[tex]\begin{gathered} s=12,\text{ a=7, b=8, c=9} \\ \text{Area, A==}\sqrt[]{s(s-a)(s-b)(s-c)} \\ A=\sqrt[]{12(12-7)(12-8)(12-9)} \\ A=\sqrt[]{12\times5\times4\times3} \\ A=\sqrt[]{720} \end{gathered}[/tex]Then the area of the triangle is
[tex]Area,A=12\sqrt[]{5}=26.83\text{ square unit}[/tex]