Respuesta :

Solution

Step-by-step explanation:

Width= x

Length= 2x + 1

Area = 28

Area =>width × length

28 = x(2x + 1)

[tex]\begin{gathered} 28=2x^2+x \\ 2x^2+x-28=0 \\ 2x^2+8x-7x-28=0 \\ 2x(x+4)-7(x+4)=0 \\ 2x-7=0,x+4=0 \\ 2x=7,x=-4 \\ x=\frac{7}{2},x=-4 \end{gathered}[/tex]

width = 7/2 , -4 is invalid

[tex]\begin{gathered} width\text{ =7/2=3.5} \\ length\text{ = 2\lparen7/2\rparen+1} \\ =7+1 \\ =8 \end{gathered}[/tex]

Therefore the dimensions are

[tex]\begin{gathered} width=3.5\text{m} \\ length\text{ = 8m} \end{gathered}[/tex]