Respuesta :

We have to simplify the next given expression:

[tex]\frac{m^2b^4r^3}{r^4b^4m}[/tex]

First, we can cancel the common terms b⁴/b⁴ = 1

Then:

[tex]\frac{m^2r^3}{r^4m}[/tex]

Now, we need to use the next exponents property:

[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

For m:

[tex]\frac{m^2}{m}=m^{2-1}=m[/tex]

Therefore:

[tex]\frac{mr^3}{r^4}[/tex]

For r:

[tex]\frac{r^3}{r^4}=r^{3-4}=r^{-1}[/tex]

Use for r the next exponent property:

[tex]a^{-m}=\frac{1}{a^m}[/tex]

Hence, we have the next simplified expression:

[tex]m\cdot\frac{1}{r}[/tex][tex]=\frac{m}{r}[/tex]