f(x) = 42g(x) = 2x + 3Find () (x). Include any restrictions on the domain.

Determine the function (f/g)(x).
[tex]\begin{gathered} (\frac{f}{g})(x)=\frac{f(x)}{g(x)} \\ =\frac{\sqrt[3]{4x}}{2x+3} \end{gathered}[/tex]For the real value of the function (f/g)(x), 2x + 3 should not equal to 0. So,
[tex]\text{ 2x + 3 }\ne0[/tex]Simplify
[tex]2x+3\ne0[/tex]to obtain the value of x.
[tex]\begin{gathered} 2x+3\ne0 \\ 2x\ne-3 \\ x\ne-\frac{3}{2} \end{gathered}[/tex]So x should not equal to -3/2. Thus restiction on the function is,
[tex]x\ne-\frac{3}{2}[/tex]Answer: Option B.