Respuesta :

Two triangles that are similar have the following characteristics:

1) The corresponding angles are congruent

2) The corresponding sides ratios have the same proportion.

So for triangles, JKL and J'K'L' the ratios of the corresponding sides are:

[tex]\frac{J^{\prime}K^{\prime}}{JK}=\frac{K^{\prime}L^{\prime}}{KL}=\frac{J^{\prime}L^{\prime}}{JL}[/tex]

Given

JK=10cm

KL=30cm

K'L'=13.5cm

We can calculate the length of J'K' using the ratios:

[tex]\begin{gathered} \frac{K^{\prime}L^{\prime}}{KL}=\frac{J^{\prime}K^{\prime}}{JK} \\ \frac{13.5}{30}=\frac{x}{10} \\ (\frac{13.5}{30})\cdot10=x \\ x=4.5 \end{gathered}[/tex]

Segment J'K'=4.5cm