For the following equation, determine the values of the missing entries. Reduce all fractions to lowest terms.x = y²Note: Each column in the table represents an ordered pair. If multiple solutions exist, you only need to identify one.

Given the equation:
[tex]x=y^2[/tex]Solving for y:
[tex]y=\sqrt{x}[/tex]If we are given the values of y, we use the first equation, otherwise, we use the second equation.
We are required to find the values of y for x ={0, 16, 100} and the values of x for:
[tex]y={}\lbrace\sqrt{5},-2\sqrt{2}\rbrace[/tex]Calculate the values of y:
x = 0
[tex]y=\sqrt{0}=0[/tex]x = 16
[tex]y=\sqrt{16}=4[/tex]x = 100
[tex]y=\sqrt{100}=10[/tex]Now calculate the values of x.
[tex]x=(\sqrt{5})^2=5[/tex]Finally:
[tex]\begin{gathered} x=(-2\sqrt{2})^2 \\ \\ x=(-2)^2(\sqrt{2})^2 \\ \\ x=4\cdot2=8 \end{gathered}[/tex]The table with the completed values is shown below: