Respuesta :
[tex]\begin{gathered} v_{ox}=0\text{ m/s} \\ v_{oy}=6.2\text{ m/s} \\ a_x=-4.4m/s^2 \\ t=5.0\text{ s} \\ a) \\ x-\text{position} \\ x_o=0\text{ m} \\ x_f=x_o+v_{ox}t+\frac{at^2}{2} \\ x_f=\frac{at^2}{2} \\ x_f=\frac{(-4.4m/s^2)(5.0s)^2}{2} \\ x_f=-55\text{ m} \\ \text{The x-position is -55m} \\ y-\text{position} \\ y_f=v_{oy}t \\ y_f=(6.2\text{ m/s})(5.0\text{ s}) \\ y_f=31\text{ m} \\ \text{The y-position is 31m} \\ b) \\ \text{For v}_{fx} \\ \text{v}_{fx}=v_{ox}+a_xt \\ \text{v}_{fx}=a_xt \\ \text{v}_{fx}=(-4.4m/s^2)(5.0s) \\ \text{v}_{fx}=-22\text{ m/s} \\ \text{The v}_{fx}\text{ at that time is -22 m/s} \\ \text{For v}_{fy} \\ \text{ v}_{fy}=v_{oy}=6.2\text{ m/s} \\ \text{The v}_{fy}\text{ at that time is 6.2 m/s because it has constant velocity} \\ c) \\ The\text{ x-spe}ed\text{ increases with time at x-negative. Hence the resultant spe}ed\text{ increases too} \\ \text{with time} \end{gathered}[/tex]
