Given that;
[tex]\begin{gathered} \text{Probability of passing low house=Pr(l)=0.75} \\ \text{Probability of passing upper house = Pr(U)=0.52} \\ \text{Probability of passing the low house or the upper house=}Pr(l\cup U)=0.83 \end{gathered}[/tex]Therefore, we can find the probability that it will pass both houses using the formula below;
[tex]\begin{gathered} Pr(L\cup U)=Pr(L)+Pr(U)-Pr(L\cap U) \\ \text{Where }Pr(L\cap U)=probability\text{ that it will pass both houses} \end{gathered}[/tex]Thus;
[tex]\begin{gathered} Pr(L\cup U)=Pr(L)+Pr(U)-Pr(L\cap U) \\ 0.83=0.75+0.52-Pr(L\cap U) \\ Pr(L\cap U)=1.24-0.83 \\ =0.41 \end{gathered}[/tex]Therefore, the probability to at it will pass both houses is 0.41