Respuesta :

hello

the equation of a straight line is given as

[tex]\begin{gathered} y=mx+b \\ b=\text{intercept} \\ m=\text{slope} \end{gathered}[/tex][tex]\text{slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

from the graph given the values of the co-ordinates are given as

[tex]\begin{gathered} y_2=280 \\ x_2=20 \\ y_1=120 \\ x_1=0 \end{gathered}[/tex]

now let's substitute the values into the equation and solve

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{280-120}{20-0} \\ \text{slope(m)}=\frac{160}{20} \\ \text{slope(m)}=8 \end{gathered}[/tex]

from the calculations above, the slope of the line is equal to 8 and also the y-intercept is equal to 120

the equation of the line =

[tex]\begin{gathered} y=mx+b \\ m=8 \\ b=120 \\ y=8x+120 \end{gathered}[/tex]

the equation of the line is y = 8x + 120 and this correspo