graph the image of triangle def after dilation centered at point M with a scale factor of 3. When you are done, write of the coordinates of triangle d'e'f

Let:
[tex]\begin{gathered} F=(-4,4) \\ D=(-3,2) \\ E=(-2,3) \\ M=(-1,1) \end{gathered}[/tex]Let's use the following formula in order to find the new coordinates:
[tex]\begin{gathered} D_{O,k}(x,y)=(k(x-a)+a,k(y-b)+b) \\ where: \\ k=Scale_{\text{ }}factor=3 \\ O=Center_{\text{ }}of_{\text{ }}dilation_{\text{ }}at_{\text{ }}(a,b)=M=(-1,1) \end{gathered}[/tex]So:
[tex]\begin{gathered} F^{\prime}=(3(-4-(-1))-1,3(4-1)+1)=(-10,10) \\ D^{\prime}=(3(-3-(-1))-1,3(2-1)+1)=(-7,4) \\ E^{\prime}=(3(-2-(-1))-1,3(3-1)+1)=(-4,7) \end{gathered}[/tex]Now, we can graph the new figure: