Answer:
x + 1/3
Explanation:
The initial expression is:
[tex](4x+\frac{3}{4})+(-3x-\frac{5}{12})[/tex]So, we can rewrite the expression as:
[tex]\begin{gathered} 4x+\frac{3}{4}-3x-\frac{5}{12} \\ 4x-3x+\frac{3}{4}-\frac{5}{12} \end{gathered}[/tex]Then, we can add similar terms, so:
[tex]\begin{gathered} (4x-3x)+(\frac{3}{4}-\frac{5}{12})_{} \\ x+\frac{1}{3} \end{gathered}[/tex]Where the fraction 1/3 is calculated using the following equation:
[tex]\frac{3}{4}-\frac{5}{12}=\frac{(3\times12)-(4\times5)}{(4\times12)}=\frac{36-20}{48}=\frac{16}{48}=\frac{1}{3}[/tex]Therefore, the answer is:
x + 1/3