Respuesta :

Given that the pentagons ABCDE and JKLMN.

Let's find the length of KL.

Given:

AB = 3

BC = 2

CD = 4

DE = 3

AE = 5

KJ = 2.1

KL = x

LM = 2.8

MN = 2.1

JN = 3.5

Since the pentagons are similar, then the corresponding sides are in proportion.

Thus, we have:

[tex]\frac{AB}{KJ}=\frac{BC}{KL}=\frac{CD}{LM}=\frac{DE}{MN}=\frac{AE}{JN}[/tex]

To find the value of KL, apply the proportionality equation.

We have:

[tex]\frac{AB}{KJ}=\frac{BC}{KL}[/tex]

Input values into the equation:

[tex]\frac{3}{2.1}=\frac{2}{x}[/tex]

Let's solve for x.

Cross multiply:

[tex]\begin{gathered} 3x=2\times2.1 \\ \\ 3x=4.2 \end{gathered}[/tex]

Divide both sides by 3:

[tex]\begin{gathered} \frac{3x}{3}=\frac{4.2}{3} \\ \\ x=1.4 \end{gathered}[/tex]

Therefore, the value length of KL is 1.4 units.

ANSWER:

x = 1.4