Respuesta :

Given that the equation of the curve is

[tex]y=3\sin x+2\cos x[/tex]

at x=0.

Differentiate y with respect to x to find the slope of the tangent line.

[tex]\frac{dy}{dx}=3\frac{d(\sin x)}{dx}+2\frac{d(\cos x)}{dx}[/tex]

[tex]\frac{dy}{dx}=3\cos x-2\sin x[/tex]

Substitute x=0, we get

[tex]\frac{dy}{dx}=3\cos (0)-2\sin (0)[/tex][tex]\frac{du}{dx}=3[/tex]

We get slope =3.

Substitute x=0 in y, we get

[tex]y=3\sin (0)+2\cos (0)[/tex]

[tex]y=2[/tex]

We get the point (0,2).

Recall the formula for the point-slope

[tex]y-y_1=m(x-x_1)[/tex][tex]\text{ Substitute }x_1=0.y_1=2,\text{ and m=3, we get}[/tex]

[tex]y-2_{}=3(x-0_{})[/tex]

[tex]y-2_{}=3x[/tex]

[tex]y_{}=3x+2[/tex]

Hence the equation of the line tangent to the curve y=3sinx +2Cosx at x=0 is

[tex]y_{}=3x+2[/tex]