Respuesta :

Given:

a:b = (1/a + 1/c):(1/b + 1/c),a ≠ b,

Required:

Express c on terms of a and b​.

Explanation:

The given expression is:

[tex]\frac{a}{b}=\frac{\frac{1}{a}+\frac{1}{c}}{\frac{1}{b}+\frac{1}{c}}[/tex]

Solve it by cross multiplication as:

[tex]\begin{gathered} a(\frac{1}{b}+\frac{1}{c})=b(\frac{1}{a}+\frac{1}{c}) \\ \frac{a}{b}+\frac{a}{c}=\frac{b}{a}+\frac{b}{c} \\ \frac{a}{b}-\frac{b}{a}=\frac{b}{c}-\frac{a}{c} \end{gathered}[/tex]

Solve by taking L.C.M.

[tex]\begin{gathered} \frac{a^2-b^2}{ab}=\frac{b-a}{c} \\ \frac{(a-b)(a+b)}{ab}=\frac{b-a}{c} \\ \frac{(a-b)(a+b)}{ab}=-\frac{(a-b)}{c} \\ \frac{a+b}{ab}=-\frac{1}{c} \\ c=-\frac{ab}{a+b} \end{gathered}[/tex]

Final Answer:

Thus c in terms of a and b is:

[tex]c=-\frac{ab}{a+b}[/tex]