Respuesta :

Let's check the given function:

[tex]\sin \theta=\frac{\sqrt[]{3}}{2}[/tex]

Where sinθ is positive in quadrants 1 and 2.

Also, sinθ= opposite side/ hypotenuse:

Then:

Now, the first angle can be found solving theta:

[tex]\theta=\arcsin (\frac{\sqrt[]{3}}{2})[/tex][tex]\theta=60\text{ or }\theta=\frac{\pi}{3}[/tex]

To find the second angle we use:

[tex]\theta_2=\pi-\theta[/tex]

Then:

[tex]\theta_2=\pi-\frac{\pi}{3}[/tex][tex]\theta_2=\frac{2}{3}\pi\text{ or }\theta_2=120[/tex]

Now, sinθ will be again positive when we complete a whole circle.

Then, we use

If a circle has 2π, then 2π+1/2π =5/2π is when sinθ is positive again.

There, we use:

120* 4= 480

Then:

[tex]\sin (480)=\frac{\sqrt[]{3}}{2}[/tex]

Hence:

[tex]\theta_3=\frac{8}{3}\pi\text{ or }\theta_3=480[/tex]

Ver imagen LinleyM269687