Respuesta :

we have the expression

[tex]g(x)=\frac{x^2+1}{f(x)}[/tex]

Find out the derivative g'(x)

so

[tex]g^{\prime}(x)=\frac{(2x)(f(x)-(x^2+1)\cdot f^{\prime}(x)}{(f(x))^2}[/tex]

Looking at the graph

f(2)=3

Find out the value of f'(x) at x=2

Find out the slope of f(x) between interval (0,3)

we have the points (0,-5) and (3,7)

m=(7+5)/(3-0)

m=12/3

m=4

so

f'(2)=4

substitute the given values in the expression above

[tex]g^{\prime}(2)=\frac{(2\cdot2)(3)-(2^2+1)\cdot4}{(3)^2}[/tex][tex]g^{\prime}(2)=\frac{(4)(3)-(5)\cdot4}{9}[/tex][tex]g^{\prime}(2)=-\frac{8}{9}[/tex]

therefore

the answer is option A