As per given by the question,
There are given that the equation,
[tex](2.31\times10^{-6})+(3.41\times10^3)[/tex]Now,
From the given equation,
[tex](2.31\times10^{-6})+(3.41\times10^3)[/tex]Then,
[tex](2.31\times10^{-6})+(3.41\times10^3)=(2.31\times\frac{1}{10^6}^{})+(3.41\times10^3)[/tex]Then,
[tex]\begin{gathered} (2.31\times10^{-6})+(3.41\times10^3)=(2.31\times\frac{1}{10^6}^{})+(3.41\times10^3) \\ =\frac{2.31}{10^6}+(3.41\times10^3) \\ =\frac{2.31}{1000000^{}}+(3.41\times1000^{}) \\ =0.00000231+34109 \\ =3410.00000231 \end{gathered}[/tex]Hence, the value of the given equation is, 3410.00000231.