A post is supported by two wires (one on each side going in oppositedirections) creating an angle of 80° between the wires. The ends of thewires are 14m apart on the ground with one wire forming an angle of 40°with the ground. Find the lengths of the wires. Put both answersseparated by a comma. (For example 15.11, 19.72) Round to the nearesthundredth.

Respuesta :

Using the Sine rule,

[tex]\frac{\sin A}{A}=\frac{\sin B}{B}=\frac{\sin C}{C}[/tex][tex]\begin{gathered} \text{Let A = 14m,} \\ Substituting the variables into the formula,

Where the length of the wires are, AP = xm and BP = ym

[tex]\begin{gathered} \frac{\sin80^0}{14}=\frac{\sin40^0}{x} \\ \text{Crossmultiply,} \\ x\times\sin 80^0=14\times\sin 40^0 \\ Divide\text{ both sides by }\sin 80^0 \\ x=\frac{14\sin40^0}{\sin80^0} \\ x=9.14m \end{gathered}[/tex]

Hence, the length of wire AP (x) is 9.14m.

For wire BP (y)m,

Sum of angles in a triangle is 180 degrees,

[tex]A^0+P^0+B^0=180^0[/tex][tex]\begin{gathered} \text{Where A}^0=\text{ unknown,} \\ P^0=80^0\text{ and,} \\ B^0=40^0 \\ A^0+80^0+40^0=180^0 \\ A^0+120^0=180^0 \\ A^0=180^0-120^0 \\ A^0=60^0 \end{gathered}[/tex]

Using the side rule to find the length of wire BP,

[tex]\begin{gathered} \frac{\sin 60^0}{y}=\frac{\sin 80^0}{14} \\ \text{Crossmultiply,} \\ y\times\sin 80^0=14\times\sin 60^0 \\ \text{Didive both sides by }\sin 80^0 \\ y=\frac{14\times\sin 60^0}{\sin 80^0} \\ y=12.31m \end{gathered}[/tex]

Hence, the length of wire BP (y) is 12.31m

Therefore, the length of the wires are (9.14m and 12.31m).

Ver imagen AmariseU418634