Answer;
A) 24 yards
B) (24 + 8√3)yards
C) 454.28 square yards
Explanations:
A) The triangle NPO is a right triangle. The length of the centre aisle NP is determined using the SOH CAH TOA identity;
[tex]\begin{gathered} sin60=\frac{NP}{16\sqrt{3}} \\ \frac{\sqrt{3}}{2}=\frac{NP}{16\sqrt{3}} \\ 2NP=16(3) \\ 2NP=48 \\ NP=24yds \end{gathered}[/tex]
Hence the length of centre aisle is 24 yards
B) The measure of the base is LO
LO = LP + PO
Determine the length of LP and PO
[tex]\begin{gathered} tan45=\frac{NP}{LP} \\ 1=\frac{24}{LP} \\ LP=24yds \end{gathered}[/tex][tex]\begin{gathered} tan60=\frac{NP}{PO} \\ \sqrt{3}=\frac{24}{PO} \\ PO=\frac{24}{\sqrt{3}} \\ PO=\frac{24\sqrt{3}}{\sqrt{3}\times\sqrt{3}} \\ PO=8\sqrt{3}yds \\ \end{gathered}[/tex][tex]Length\text{ of the base LO}=(24+8\sqrt{3})yds[/tex]
C) The area of the garden (triangle) is expressed as:
[tex]\begin{gathered} A=\frac{1}{2}\times base\times height \\ A=\frac{1}{2}\times LO\times NP \\ A=\frac{1}{2}\times(24+8\sqrt{3})\times24 \\ A=12(24+8\sqrt{3}) \\ A=12(37.8564) \\ A\approx454.28yd^2 \end{gathered}[/tex]
Hence the approximate area of the garden is 454.28 square yards