Given:
The table values for the linear function are given.
To find:
The y-intercept and the equation of the line.
Explanation:
According to the table values,
When x =0, the y value becomes 13.
So, the y-intercept of the line is,
[tex](0,13)[/tex]
Let us consider,
[tex](0,13),m=\frac{1}{2}[/tex]
Using the point-slope formula,
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-13=\frac{1}{2}(x-0) \\ y-13=\frac{x}{2} \\ 2y-26=x \\ x-2y+26=0 \end{gathered}[/tex]
Therefore, the equation of the line is,
[tex]x-2y+26=0[/tex]
Final answer:
2) The y-intercept of the line is,
[tex](0,13)[/tex]
3) The equation of the line is,
[tex]x-2y+26=0[/tex]