Respuesta :

Given the zeros of the function:

[tex]\begin{gathered} 6 \\ 7i \\ -7i \end{gathered}[/tex]

You can write the equation in Factored Form:

[tex]f(x)=\mleft(x-6\mright)\mleft(x-7i\mright)\mleft(x+7i\mright)[/tex]

Now you need to simplify:

1. Remember this formula:

[tex](a+b)(a-b)=a^2-b^2[/tex]

In this case:

[tex]a=x[/tex][tex]b=7i[/tex]

Therefore, you can rewrite the expression in this form:

[tex]f(x)=(x-6)((x)^2-(7i)^2)[/tex]

2. By definition:

[tex]\begin{gathered} i=\sqrt[]{-1} \\ \\ i^2=-1 \end{gathered}[/tex]

Then:

[tex]\begin{gathered} f(x)=(x-6)(x^2-49(-1)) \\ \\ f(x)=(x-6)(x^2+49) \end{gathered}[/tex]

3. Now you need to use the FOIL Method in order to multiply the binomials. This states that:

[tex](a+b)\mleft(c+d\mright)=ac+ad+bc+bd[/tex]

Hence:

[tex]\begin{gathered} f(x)=(x)(x^2)+(x)(49)-(6)(x^2)-(6)(49) \\ \\ f(x)=x^3+49x-6x^2-294 \end{gathered}[/tex]

4. Ordering the polynomial from the highest power to the least power, you get:

[tex]f(x)=x^3-6x^2+49x-294[/tex]

Hence, the answer is: Option d.