Respuesta :

Let the given equation be,

[tex]^{}f(x)=x^3-x^2-x+1[/tex]

Take the derivative of the function implies,

[tex]f^{\prime}(x)=3x^2-2x-1[/tex]

Put f'(x)=0 gives,

[tex]3x^2-2x-1=0[/tex]

Since, it is a quadratic equation having two roots. Therefore, the number of turning points will be 2.

Hence, Option B.