Respuesta :

We have to calculate the area of a triangle where we only know the lengths of the sides.

We can apply the Heron's formula:

[tex]A=\sqrt[]{p(p-q)(p-r)(p-s)}[/tex]

where q, r and s are the side's lengths and p is half the perimeter:

[tex]p=\frac{q+r+s}{2}=\frac{950+290+880}{2}=\frac{2120}{2}=1060[/tex]

Then, we can calculate the area as:

[tex]\begin{gathered} A=\sqrt[]{1060\cdot(1060-950)\cdot(1060-290)\cdot(1060-880)} \\ A=\sqrt[]{1060\cdot110\cdot770\cdot180} \\ A=\sqrt[]{16160760000} \\ A\approx127124.98\operatorname{cm} \\ A\approx127125\operatorname{cm} \end{gathered}[/tex]

Answer: the area of the triangle is 127,125 cm^2.